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ABSTRACT

Signals consisting of short pulses are present in many applications
including ultrawideband communication, object detection and nav-
igation (radar, sonar) and medical imaging. The structure of such
signals, effectively captured within the finite rate of innovation (FRI)
framework, allows for significant reduction in sampling rates, re-
quired for perfect reconstruction. In this work we consider ultra-
sound imaging, where the FRI signal structure allows to reduce both
sampling and processing rates. We show that beamforming, a crucial
processing step in image generation that generally requires oversam-
pling, can be implemented directly on reduced rate samples. This is
obtained by replacing the standard time-domain processing by a fre-
quency domain approach and relying on FRI sampling techniques in
frequency. Using this approach we achieve significant rate reduction
while retaining adequate image quality for both 2D and 3D imaging
setups using data obtained by commercial imaging system.

Index Terms— Array processing, finite rate of innovation,
beamforming, ultrasound, sub-Nyquist sampling.

1. INTRODUCTION

When sampling an analog signal, we aim to represent it by discrete-
time coefficients that capture its important features. The minimal
sampling rate required for perfect reconstruction of bandlimited sig-
nals is defined by the classic Shannon-Nyquist as twice the maximal
frequency. In many applications such rates are overwhelming. Luck-
ily, the required sampling rate can be significantly reduced when ad-
ditional information on signal structure is available. An interesting
class of structured signals was suggested by Vetterli et al. [1], who
considered signals with a finite number of degrees of freedom per
unit time - signals with finite rate of innovation (FRI). One of the
most studied cases of FRI signals is a stream of pulses, namely, a
signal consisting of a stream of short pulses where the pulse shape
is known. Such signals are presented in abundance in ultrawideband
communication, object detection and navigation (radar, sonar) and
medical imaging. In this work we consider an application of the
FRI model to medical ultrasound imaging. Here FRI signal struc-
ture allows to reduce both sampling and processing rates far below
the Nyquist rate of the signal.

Ultrasound imaging is performed by transmitting an acoustic
pulse along a narrow beam from an array of transducer elements.
During its propagation echoes are scattered by acoustic impedance
perturbations in the tissue, and received by the array elements. The
data, collected by the transducers, is sampled and digitally integrated
in a way referred to as beamforming. The process of beamforming
is comprised of averaging the received signals after their alignment

with appropriate time-dependent delays. Beamforming allows to ob-
tain a signal steered in a predefined direction, corresponding to the
transmission path, and optimally focused at each depth. This re-
sults in signal-to-noise ratio (SNR) enhancement and improvement
of angular localization. Such a beamformed signal, referred to as
beam, forms a line in the image. Rates up to 4-10 times the central
frequency of the transmitted pulse are typically required in order to
eliminate artifacts caused by digital implementation of beamforming
in time [2]. Taking into account the number of transducer elements
and the number of lines in an image, the amount of sampled data
that needs to be digitally processed is very large, motivating meth-
ods to reduce sampling and processing rates. The reduction in rate
and, consequently, in amount of data can be particulary beneficial
for portable devices and wireless probes.

Several frameworks reported in the literature [3, 4, 5] allow to
sample and recover each individual received signal at a low-rate,
while exploiting their structure and assuming sufficiently high SNR.
However, the final goal in low-rate ultrasound imaging is to recover a
2D or 3D image. Such an image is obtained by integrating the noisy
data sampled at multiple transducer channels. In standard imaging
the integration is achieved by the process of beamforming, which is
performed digitally and, theoretically, requires high sampling rates.
Hence, in order to benefit from the rate reduction, achieved at the
level of the received signals, one needs to be able to incorporate
beamforming into the low-rate sampling process. Several works de-
scribe methods for recovering a beamformed signal from its low-
rate samples using compressed sensing (CS) [6] methodology [7],
[8], [9]. However, these techniques all assume that one has access
to the continuous-time beamformed data. In practice, the beam-
formed signal is formed from samples of each of the individual re-
ceived signals, so samples of the beamformed signal are not avail-
able at the transducer elements. Here we show that beamforming
can be implemented directly on reduced rate samples by replacing
the standard time-domain processing by a frequency domain ap-
proach [10, 11] and relying on previous FRI sampling techniques
in frequency [3, 12, 10]. The proposed method is demonstrated on
data obtained by commercial imaging system for both 2D and 3D
imaging modes. The resulting images retain adequate image quality,
while the rates are reduced far below Nyquist.

The rest of the paper is organized as follows: in Section 2, we
review beamforming in time. The FRI model of beamformed signal
is introduced in Section 3. In Section 4 we show that beamforming
can be performed directly in frequency using low-rate samples of
individual elements and introduce low-rate sampling approach. The
performance of the proposed method for both 2D and 3D imaging
modes is demonstrated in Section 5. Section 6 concludes the paper.
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2. CONVENTIONAL PROCESSING

To derive an equation corresponding to the process of beamforming
we consider an array comprised of M transceiver elements, as il-
lustrated in Fig. 1. The reference element m0 is set at the origin.
Denote by δm its distance to the mth element and by c the speed
of sound. A pulse of acoustic energy, transmitted at the direction θ,

1 m0 m M
x

δm

Reflecting point

θ

z

Fig. 1. M receivers aligned along the x axis. An acoustic pulse is
transmitted in a direction θ. The echoes scattered from perturbation
in the radiated tissue are received by the array elements.

reaches coordinates (x, z) = (ct sin θ, ct cos θ) at time t ≥ 0. An
echo originating from a scatterer located at this position will be re-
ceived by all array elements at a time depending on their locations.
Denote by φm(t) the signal received by the mth element and by
τ̂m(t; θ) the time of arrival. It is readily seen that:

τ̂m(t; θ) = t+
dm(t; θ)

c
, (1)

where dm(t; θ) =
√

(ct cos θ)2 + (δm − ct sin θ)2 is the distance
traveled by the reflection.

Using (1), the arrival time at m0 is τ̂m0(t; θ) = 2t. Applying an
appropriate delay to φm(t), such that the resulting signal φ̂m(t; θ)
satisfies φ̂m(2t; θ) = φm(τ̂m(t; θ)), we can align the reflection re-
ceived by the mth receiver with the one received at m0. Denoting
τm(t; θ) = τ̂m(t/2; θ) and using (1), the following aligned signal is
obtained:

φ̂m(t; θ) = φm(τm(t; θ)), (2)

τm(t; θ) =
1

2

(
t+

√
t2 − 4(δm/c)t sin θ + 4(δm/c)2

)
.

The beamformed signal may now be derived by averaging the
aligned signals:

Φ(t; θ) =
1

M

M∑
m=1

φ̂m(t; θ). (3)

Such a beam is optimally focused at each depth and hence exhibits
improved angular localization and enhanced SNR.

Although defined over continuous time, modern imaging sys-
tems perform the beamforming in (2)-(3) in the digital domain. This
allows to apply dynamically changing delays of (2) on sampled and
stored channel data. Digital implementation of beamforming, how-
ever, requires severe oversampling of the received signals since the
Nyquist rate is insufficient due to the high delay resolution needed.
The required sampling rates are usually 4-10 times the transducer
central frequency [2]. In the sequel we denote the rate required
to avoid artifacts in digital implementation of beamforming, as the
beamforming rate fs.

In this paper we show that by translation of the beamforming
process to the frequency domain and by exploiting the FRI structure
of the beam we are able not only to avoid oversampling, but both
sample and process the data at sub-Nyquist rates.

3. FRI MODEL OF ULTRASOUND SIGNAL

According to [10], a beamformed signal obeys an FRI model,
namely, it can be modeled as a sum of replicas of the known trans-
mitted pulse, h(t), with unknown amplitudes and delays:

Φ(t; θ) ≃
L∑

l=1

blh(t− tl). (4)

Here L is the number of scattering elements in direction θ, {bl}Ll=1

are the unknown amplitudes of the reflections and {tl}Ll=1 denote
the times at which the reflection from the lth element arrived at the
receiver m0. The Fourier coefficients of the beam are given by:

c[k] = h[k]
L∑

l=1

ble
−i 2π

T
ktl , (5)

where h[k] is the Fourier coefficient of the transmitted pulse. By
quantizing the delays {tl}Ll=1 with quantization step Ts = 1

fs
, such

that tl = qlTs, ql ∈ Z, we may write the Fourier coefficients of the
beamformed signal as:

c[k] = h[k]

L∑
l=1

ble
−i 2π

T
kqlTs . (6)

Assume we have a subset µBF , |µBF | = MBF , of beam’s Fourier
coefficients. Denoting by N the ratio ⌊T/Ts⌋ we can recast (6) in
vector-matrix notation:

c = HDb = Ab, (7)

where H is an MBF × MBF diagonal matrix with h[k] as its kth
entry, D is an MBF × N matrix formed by taking the set µBF of
rows from an N × N Fourier matrix, and b is a length-N vector
whose kth entry equals bl for k = ql and 0 otherwise.

Our goal is to determine b from a length-MBF measurement
vector c. To this end we note that a beamformed ultrasound signal
is typically comprised of a relatively small number of strong reflec-
tions and many scattered echoes, that are on average at least two
orders of magnitude weaker. It is, therefore, natural to assume that
the coefficient vector b, defined in (7), is compressible or approxi-
mately sparse. This property of b can be captured by using the l1
norm, leading to the optimization problem:

min
b

∥b∥1 subject to ∥Ab− c∥2 ≤ ε. (8)

Problem (8) is a classic CS problem and can be solved using second-
order methods such as interior point methods [13], [14] or first-order
methods, based on iterative shrinkage ideas [15], [16].

4. FREQUENCY DOMAIN BEAMFORMING AND
LOW-RATE SAMPLING

We have shown that a beamformed signal can be recovered from a
small subset of µBF of its Fourier coefficients. However, sampling
is performed in time prior to beamforming. The question is how
can we obtain frequency samples of the beam from low-rate time
samples of the received signals?

4.1. Beamforming in Frequency

To this end we use the fact that beamforming can be performed
equivalently directly in frequency, namely, Fourier coefficients of the
beam can be obtained as a linear combination of Fourier coefficients
of the received signals [10, 11].
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Denote the Fourier series coefficients of Φ(t; θ) with respect to
the interval [0, T ) by

c[k] =
1

T

∫ T

0

I[0,TB(θ))(t)Φ(t; θ)e
−i 2π

T
ktdt, (9)

where I[a,b) is the indicator function equal to 1 when a ≤ t < b and
0 otherwise, T is defined by the transmitted pulse penetration depth
and TB(θ) = min1≤m≤M τ−1

m (T ; θ) < T defines the support of
the beam as shown in [10]. Plugging (2) and (3) into (9), we get:

c[k] =
1

M

M∑
m=1

1

T

∫ T

0

I[0,TB(θ))(t)φm(τm(t; θ))e−i 2π
T

ktdt. (10)

After some algebraic manipulation we obtain:

c[k] =
1

M

M∑
m=1

1

T

∫ T

0

φm(t)qk,m(t; θ)e−i 2π
T

ktdt, (11)

with

qk,m(t; θ) =I[|γm|,τm(T ;θ))(t)

(
1 +

γ2
m cos2 θ

(t− γm sin θ)2

)
× (12)

exp

{
i
2π

T
k
γm − t sin θ

t− γm sin θ
γm

}
,

and γm = δm/c. Note that (11) contains a non-delayed version of
φm(t), in contrast to (10). The delays are effectively applied through
the distortion function, qk,m(t; θ), defined in (12).

We next replace φm(t) by its Fourier series coefficients. Denot-
ing the nth Fourier coefficient by cm[n] we can rewrite (11) as

c[k] =
1

M

M∑
m=1

∑
n

cm[n]
1

T

∫ T

0

qk,m(t; θ)e−i 2π
T

(k−n)tdt (13)

=
1

M

M∑
m=1

∑
n

cm[k − n]Qk,m;θ[n],

where Qk,m;θ[n] are the Fourier coefficients of qk,m(t; θ) with re-
spect to [0, T ). When substituted by its Fourier coefficients, the dis-
tortion function effectively transfers the beamforming delays defined
in (2) to the frequency domain. The function qk,m(t; θ) depends
only on the array geometry and is independent of the received sig-
nals. Therefore, its Fourier coefficients can be computed off-line and
used as a look-up-table (LUT) during the imaging cycle.

In addition, as shown in [11], most of the energy of the set
{Qk,m;θ[n]} is concentrated around the direct current (DC) com-
ponent and its decaying properties allow to rewrite (13) as

c[k] ≃ 1

M

M∑
m=1

N2∑
n=−N1

cm[k − n]Qk,m;θ[n], (14)

where the choice of N1 and N2 controls the approximation quality.
Derivations of frequency domain beamforming can be extended

to 3D imaging mode [17]. To this end we need to take into account
the 2D geometry of the transducer and an additional steering angle,
required to span the 3D volume of interest. As shown in [17], these
changes affect the distortion function defined in (12), however, the
decaying property of its Fourier coefficients remains unchanged and
(13) remains valid.

Fig. 2. A Xampling-based hardware prototype for sub-Nyquist sam-
pling. The prototype computes low-rate samples of the input from
which the required set of Fourier coefficients can be computed.

4.2. Low Rate Sampling

Denote by β the set of Fourier coefficients of the received signal that
correspond to its bandwidth, namely, the values of k for which cm[k]
is nonzero (or larger than a threshold). Let B denote the cardinality
of β. Note that (14) implies, that the bandwidth of the beamformed
signal, βBF , will contain at most (B+N1+N2) nonzero frequency
components. In a typical imaging setup the size of B is on the order
of hundreds, while N1 and N2, defined by the decay properties of
{Qk,m;θ[n]}, are typically no larger than 10. This implies that B +
N1 +N2 ≈ B, so that the bandwidth of the beam is approximately
equal to the bandwidth of the received signals.

To compute the elements in βBF according to (14) we need a
set β of each of the received signals. This allows to exploit the low
effective bandwidth of the received signals and apply beamforming
at a rate corresponding to the effective Nyquist rate of the received
signals, namely, the signal’s effective bandpass bandwidth. In this
way we avoid oversampling required by digital implementation of
beamforming in time, assuming that it is possible to obtain the re-
quired set β for each one of the received signals by sampling at the
effective Nyquist rate.

A general approach to this problem is to use the Xampling mech-
anism proposed in [3]. Xampling allows to obtain an arbitrary set κ,
comprised of K frequency components, from K point-wise samples
of the signal filtered with an appropriate analog kernel s∗(−t). The
kernel is designed according to the required set κ. It effectively zeros
those frequency components of the signal that are not included in κ.
The required Fourier coefficients are equal to the Fourier transform
of the output, therefore, the number of taken samples is equal to the
number of Fourier coefficients of interest. Theoretically, for a gen-
eral and possibly non-consecutive set of frequency components the
Sum of Sincs kernel can be used [3]. Practical aspects of the Xam-
pling approach implementation for sub-Nyquist sampling of radar
signals are considered in [18]. This work led to the implementation
of a hardware Xampling prototype, shown in Fig. 2, allowing to
sample radar signals far below their Nyquist rate.

In the context of ultrasound imaging a simpler sampling ap-
proach is often possible. We aim to obtain a consecutive set β of
the Fourier coefficients of the received signals. This can be achieved
by filtering the received signal with a simple band-pass filter, corre-
sponding to the frequency band, defined by β. The resulting signal
can then be sampled at the Nyquist rate, defined with respect to the
bandwidth of β, using band-pass [19] or quadrature sampling [20]
techniques. Applying the Fourier transform to the resulting low-rate
samples yields the required set β. In this approach the received sig-
nals are sampled at their effective Nyquist rate.

Further reduction in rate can be achieved if we want to obtain
only a partial frequency beam’s data as discussed in Section 3. Ex-
plicitly, assume that now we are interested in µBF ⊂ βBF of size
MBF of Fourier coefficients of the beam. We note that according to
(14) µBF can be calculated from at most M = (MBF +N1 +N2)
Fourier coefficients of each one of the received signals. Denote the
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required subset of M coefficients of the received signal by µ. In this
case the received signals are sampled at a rate which is N/M lower
than the standard beamforming rate and B/M lower than their ef-
fective Nyquist rate, while the required analog kernel is defined by
the subset µBF .

The choice of µBF and consequently the analog kernel is dic-
tated by the transmitted pulse shape. When imaging is performed
with a modulated Gaussian pulse, the optimal choice of µBF is to
take M consecutive elements around the cental frequency. This
choice captures the maximal amount of signal energy and can be
implemented with a band-pass filter defined by the frequency band
corresponding to µBF .

On the other hand, if the spectrum of the transmitted pulse is
flat, which is the case for linear frequency-modulated chirps [21],
[22], then the performance of CS recovery improves when µBF is
comprised of elements of β chosen uniformly at random. The re-
sulting sampling operation can be implemented using the techniques
proposed in [3] and [18].

The entire scheme, performing low-rate sampling and frequency
domain beamforming, is depicted in Fig. 3. Signals {φm(t)}Mm=1,
received at each transducer element, are filtered with an appropriate
analog kernel s∗(−t) and sampled at a low-rate. Both the analog
kernel and the sampling rate are defined by the set of Fourier coef-
ficients of interest. Fourier coefficients of the received signals are
then computed and beamforming is performed directly in frequency
at a low-rate using (14).

ϕ1(t)

ϕM (t)
cM [n]

c1[n]

s∗(−t)

s∗(−t)

FFT

FFT

Q1

QM

∑
1

M c[k]

Fig. 3. Fourier domain beamforming scheme. The block Qi repre-
sents averaging the Fourier coefficients according to (14).

5. RESULTS

To demonstrate low-rate beamforming in frequency we simulated
digitally the application of our technique on in vivo cardiac data.
Data acquisition is performed with fs = 16 MHz, leading to N =
3360 samples for 16 cm imaging depth. To perform beamforming in
frequency we used a subset µBF of 100 Fourier coefficients, which
can be obtained from M = 120 low-rate samples by the scheme
illustrated in Fig. 3 with an appropriate choice of band-pass filter.
This implies 28 fold reduction in sampling and 14 fold reduction in
processing rate compared to standard beamforming, which requires
3360 samples for this particular imaging setup. The difference be-
tween the sampling and processing rates stems from the complex
nature of Fourier coefficients. Having computed the Fourier coef-
ficients of the beamformed signal, we obtain its parametric repre-
sentation by solving (8). To this end we used the NESTA algorithm
[23]. The resulting images, corresponding to two different frames,
are shown in Fig. 4.

We next demonstrate our method on data collected using a com-
mercial 3D imaging system. We process the data collected in the
imaging of a phantom of a heart ventricle. In this setup frequency
domain beamforming together with exploiting FRI structure of the

(a) (b)

(c) (d)

Fig. 4. Cardiac images constructed with different beamforming tech-
niques. The first column, (a), (c), corresponds to frame 1, the sec-
ond column, (b), (d), corresponds to frame 2. (a), (b) Time domain
beamforming. (c), (d) Low-rate frequency domain beamforming.

resulting signals allow to obtain 11-fold rate reduction while retain-
ing adequate image quality as can be seen in Fig. 5. In this case
frequency domain beamforming is performed using 273 Fourier co-
efficients, while time domain processing requires 3120 samples.

(a) (b)

Fig. 5. 3D imaging of a heart ventricle phantom .(a) Time domain
beamforming. (b) Low-rate frequency domain beamforming.

6. CONCLUSIONS

In this work we propose a framework enabling low-rate ultrasound
imaging, including the step of sub-Nyquist data acquisition, low-rate
processing and beamformed signal reconstruction. The proposed
framework is based on Xampling and frequency domain beamform-
ing and exploits FRI structure of ultrasound signals. It allows not
only to sample the received signals at a low-rate, but also enables
low-rate processing, closing the gap between the acquisition of the
raw data and reconstruction of the beamformed signals, compris-
ing the resulting image. Our results prove that the concept of sub-
Nyquist processing is feasible for medical ultrasound, leading to the
potential of considerable reduction in future ultrasound machines
size, power consumption and cost.
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